Исследовать кубическую функцию и построить ее график. Как исследовать функцию и построить ее график

РЕФЕРАТ

«Полное исследование функции и построение её графика».

ВВЕДЕНИЕ

Изучение свойств функции и построение ее графика являются одним из самых замечательных приложений производной. Этот способ исследования функции неоднократно подвергался тщательному анализу. Основная причина состоит в том, что в приложениях математики приходилось иметь дело с более и более сложными функциями, появляющимися при изучении новых явлений. Появились исключения из разработанных математикой правил, появились случаи, когда вообще созданные правила не годились, появились функции, не имеющие ни в одной точке производной.

Целью изучения курса алгебры и начал анализа в 10-11 классах является систематическое изучение функций, раскрытие прикладного значения общих методов математики, связанных с исследованием функций.

Развитие функциональных представлений в курсе изучения алгебры и начал анализа на старшей ступени обучения помогает старшеклассникам получить наглядные представления о непрерывности и разрывах функций, узнать о непрерывности любой элементарной функции на области ее применения, научиться строить их графики и обобщить сведения об основных элементарных функциях и осознать их роль в изучении явлений реальной действительности, в человеческой практики.

    Возрастание и убывание функции

Решение различных задач из области математики, физики и техники приводит к установлению функциональной зависимости между участвующими в данном явлении переменными величинами.

Если такую функциональную зависимость можно выразить аналитически, то есть в виде одной или нескольких формул, то появляется возможность исследовать ее средствами математического анализа.

Имеется в виду возможность выяснения поведения функции при изменении той или иной переменной величины (где функция возрастает, где убывает, где достигает максимума и т.д.).

Применение дифференциального исчисления к исследованию функции опирается на весьма простую связь, существующую между поведением функции и свойствами ее производной, прежде всего ее первой и второй производной.

Рассмотрим, как можно находить интервалы возрастания или убывания функции, то есть интервалы ее монотонности. Исходя из определения монотонно убывающей и возрастающей функции, можно сформулировать теоремы, позволяющие связать значение первой производной данной функции с характером ее монотонности.

Теорема 1.1 . Если функция y = f ( x ) , дифференцируемая на интервале ( a , b ) , монотонно возрастает на этом интервале, то в любой его точке
( x ) >0; если она монотонно убывает, то в любой точке интервала ( x )<0.

Доказательство. Пусть функция y = f ( x ) монотонно возрастает на ( a , b ) , значит, для любого достаточно малого > 0 выполняется неравенство:

f ( x - ) < f ( x ) < f ( x + ) (рис. 1.1).

Рис. 1.1

Рассмотрим предел

.

Если > 0, то > 0, если < 0, то

< 0.

В обоих случаях выражение под знаком предела положительно, значит, и предел положителен, то есть ( x )>0 , что и требовалось доказать. Аналогично доказывается и вторая часть теоремы, связанная с монотонным убыванием функции.

Теорема 1.2 . Если функция y = f ( x ) , непрерывна на отрезке [ a , b ] и дифференцируема во всех его внутренних точках, и, кроме того, ( x ) >0 для любого x ϵ ( a , b ) , то данная функция монотонно возрастает на ( a , b ) ; если

( x ) <0 для любого ( a , b ), то данная функция монотонно убывает на ( a , b ) .

Доказательство. Возьмем ϵ ( a , b ) и ϵ ( a , b ) , причем < . По теореме Лагранжа

( c ) = .

Но ( c )>0 и > 0, значит, ( > 0, то есть

(. Полученный результат указывает на монотонное возрастание функции, что и требовалось доказать. Аналогично доказывается вторая часть теоремы.

    Экстремумы функции

При исследовании поведения функции особую роль играют точки, которые отделяют друг от друга интервалы монотонного возрастания от интервалов ее монотонного убывания.

Определение 2.1 . Точка называется точкой максимума функции

y = f ( x ) , если для любого, сколь угодно малого , ( < 0 , а точка называется точкой минимума, если ( > 0.

Точки минимума и максимума имеют общее название точек экстремума. У кусочно-монотонной функции таких точек конечное число на конечном интервале (рис. 2.1).

Рис. 2.1

Теорема 2.1 (необходимое условие существования экстремума) . Если дифференцируемая на интервале ( a , b ) функция имеет в точке из этого интервала максимум, то ее производная в этой точке равна нулю. То же самое можно сказать и о точке минимума .

Доказательство этой теоремы следует из теоремы Ролля, в которой было показано, что в точках минимума или максимума = 0, и касательная, проведенная к графику функции в этих точках, параллельна оси OX .

Из теоремы 2.1 вытекает, что если функция y = f ( x ) имеет производную во всех точках, то она может достигать экстремума в тех точках, где = 0.

Однако данное условие не является достаточным, так как существуют функции, у которых указанное условие выполняется, но экстремума нет. Например, у функции y = в точке x = 0 производная равна нулю, однако экстремума в этой точке нет. Кроме того, экстремум может быть в тех точках, где производная не существует. Например, у функции y = | x | есть минимум в точке x = 0 , хотя производная в этой точке не существует.

Определение 2.2 . Точки, в которых производная функции обращается в ноль или терпит разрыв, называются критическими точками данной функции .

Следовательно, теоремы 2.1 недостаточно для определения экстремальных точек.

Теорема 2.2 (достаточное условие существования экстремума) . Пусть функция y = f ( x ) непрерывна на интервале ( a , b ) , который содержит ее критическую точку , и дифференцируема во всех точках этого интервала, за исключением, быть может, самой точки . Тогда, если при переходе этой точки слева направо знак производной меняется с плюса на минус, то это точка максимума, и, наоборот, с минуса на плюс – точка минимума .

Доказательство. Если производная функции меняет свой знак при переходе точки слева направо с плюса на минус, то функция переходит от возрастания к убыванию, то есть достигает в точке своего максимума и наоборот.

Из вышесказанного следует схема исследования функции на экстремум:

1) находят область определения функции;

2) вычисляют производную;

3) находят критические точки;

4) по изменению знака первой производной определяют их характер.

Не следует путать задачу исследования функции на экстремум с задачей определения минимального и максимального значения функции на отрезке. Во втором случае необходимо найти не только экстремальные точки на отрезке, но и сравнить их со значением функции на его концах.

    Интервалы выпуклости и вогнутости функции

Еще одной характеристикой графика функции, которую можно определять с помощью производной, является его выпуклость или вогнутость.

Определение 3.1 . Функция y = f ( x ) называется выпуклой на промежутке ( a , b ) , если ее график расположен ниже любой касательной, проведенной к нему на данном промежутке, и наоборот, называется вогнутой, если ее график окажется выше любой касательной, проведенной к нему на данном промежутке .

Докажем теорему, позволяющую определять интервалы выпуклости и вогнутости функции.

Теорема 3.1 . Если во всех точках интервала ( a , b ) вторая производная функции ( x ) непрерывна и отрицательна, то функция y = f ( x ) выпукла и наоборот, если вторая производная непрерывна и положительна, то функция вогнута .

Доказательство проведем для интервала выпуклости функции. Возьмем произвольную точку ϵ ( a , b ) и проведем в этой точке касательную к графику функции y = f ( x ) (рис. 3.1).

Теорема будет доказана, если будет показано, что все точки кривой на промежутке ( a , b ) лежат под этой касательной. Иначе говоря, необходимо доказать, что для одних и тех же значений x ординаты кривой y = f ( x ) меньше, чем ординаты касательной, проведенной к ней в точке .

Рис. 3.1

Для определенности обозначим уравнение кривой: = f ( x ) , а уравнение касательной к ней в точке :

- f ( ) = ( )( x - )

или

= f ( ) + ( )( x - ) .

Составим разность и :

- = f(x) – f( ) - ( )(x- ).

Применим к разности f ( x ) – f ( ) теорему о среднем Лагранжа:

- = ( )( x - ) - ( )( x - ) = ( x - )[ ( ) - ( )] ,

где ϵ ( , x ).

Применим теперь теорему Лагранжа к выражению в квадратных скобках:

- = ( )( - )( x - ) , где ϵ ( , ).

Как видно из рисунка, x > , тогда x - > 0 и - > 0 . Кроме того, по условию теоремы, ( )<0.

Перемножая эти три множителя, получим, что , что и требовалось доказать.

Определение 3.2 . Точка, отделяющая интервал выпуклости от интервала вогнутости, называется точкой перегиба .

Из определения 3.1 следует, что в данной точке касательная пересекает кривую, то есть с одной стороны кривая расположена ниже касательной, а с другой – выше.

Теорема 3.2 . Если в точке вторая производная функции

y = f ( x ) равна нулю или не существует, а при переходе через точку знак второй производной меняется на противоположный, то данная точка является точкой перегиба .

Доказательство данной теоремы следует из того, что знаки ( x ) по разные стороны от точки различны. Значит, с одной стороны от точки функция выпукла, а с другой – вогнута. В этом случае, согласно определению 3.2, точка является точкой перегиба.

Исследование функции на выпуклость и вогнутость проводится по той же схеме, что и исследование на экстремум.

4. Асимптоты функции

В предыдущих пунктах были рассмотрены методы исследования поведения функции с помощью производной. Однако среди вопросов, касающихся полного исследования функции, есть и такие, которые с производной не связаны.

Так, например, необходимо знать, как ведет себя функция при бесконечном удалении точки ее графика от начала координат. Такая проблема может возникнуть в двух случаях: когда аргумент функции уходит на бесконечность и когда при разрыве второго рода в конечной точке уходит на бесконечность сама функция. В обоих этих случаях может возникнуть ситуация, когда функция будет стремиться к некоторой прямой, называемой ее асимптотой.

Определение . Асимптотой графика функции y = f ( x ) называется прямая линия, обладающая тем свойством, что расстояние от графика до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат .

Различают два типа асимптот: вертикальные и наклонные.

К вертикальным асимптотам относятся прямые линии x = , которые обладают тем свойством, что график функции в их окрестности уходит на бесконечность, то есть, выполняется условие: .

Очевидно, что здесь удовлетворяется требование указанного определения: расстояние от графика кривой до прямой x = стремится к нулю, а сама кривая при этом уходит на бесконечность. Итак, в точках разрыва второго рода функции имеют вертикальные асимптоты, например, y = в точке x = 0 . Следовательно, определение вертикальных асимптот функции совпадает с нахождением точек разрыва второго рода.

Наклонные асимптоты описываются общим уравнением прямой линии на плоскости, то есть y = kx + b . Значит, в отличие от вертикальных асимптот, здесь необходимо определить числа k и b .

Итак, пусть кривая = f ( x ) имеет наклонную асимптоту, то есть при x точки кривой сколь угодно близко подходят к прямой = kx + b (рис. 4.1). Пусть M ( x , y ) - точка, расположенная на кривой. Ее расстояние от асимптоты будет характеризоваться длиной перпендикуляра | MN | .

Исследование функции производится по четкой схеме и требует от студента твердых знаний основных математических понятий таких, как область определения и значений, непрерывность функции, асимптота, точки экстремума, четность, периодичность и т.п. Студент должен свободно дифференцировать функции и решать уравнения, которые порой бывают очень замысловатыми.

То есть данное задание проверяет существенный пласт знаний, любой пробел в которых станет препятствием к получению правильного решения. Особенно часто сложности возникают с построением графиков функций. Эта ошибка сразу бросается в глаза преподавателю и может очень сильно подпортить вашу оценку, даже если все остальное было сделано правильно. Здесь вы можете найти задачи на исследование функции онлайн : изучить примеры, скачать решения, заказать задания.

Исследовать функцию и построить график: примеры и решения онлайн

Мы приготовили для вас множество готовых исследований функций , как платных в решебнике, так и бесплатных в разделе Примеры исследований функций . На основе этих решенных заданий вы сможете детально ознакомиться с методикой выполнения подобных задач, по аналогии выполнить свое исследование.

Мы предлагаем готовые примеры полного исследования и построения графика функции самых распространенных типов: многочленов, дробно-рациональных, иррациональных, экспоненциальных, логарифмических, тригонометрических функций. К каждой решенной задаче прилагается готовый график с выделенными ключевыми точками, асимптотами, максимумами и минимумами, решение ведется по алгоритму исследования функции .

Решенные примеры, в любом случае, станут для вас хорошим подспорьем, так как охватывают самые популярные типы функций. Мы предлагаем вам сотни уже решенных задач, но, как известно, математических функций на свете - бесконечное количество, а преподаватели - большие мастаки выдумывать для бедных студентов все новые и новые заковыристые задания. Так что, дорогие студенты, квалифицированная помощь вам не помешает.

Решение задач на исследование функции на заказ

На этот случай наши партнеры предложат вам другую услугу - полное исследование функции онлайн на заказ. Задание будет выполнено для вас с соблюдением всех требований к алгоритму решения подобных задач, что очень порадует вашего преподавателя.

Мы сделаем для вас полное исследование функции: найдем область определения и область значений, исследуем на непрерывность и разрывность, установим четность, проверим вашу функцию на периодичность, найдем точки пересечения с осями координат. Ну и, конечно же, дальше с помощью дифференциального исчисления: разыщем асимптоты, вычислим экстремумы, точки перегиба, построим сам график.

Одной из важнейших задач дифференциального исчисления является разработка общих примеров исследования поведения функций.

Если функция y=f(x) непрерывна на отрезке , а ее производная положительна или равна 0 на интервале (a,b), то y=f(x) возрастает на (f"(x)0). Если функция y=f(x) непрерывна на отрезке , а ее производная отрицательна или равна 0 на интервале (a,b), то y=f(x) убывает на (f"(x)0)

Интервалы, в которых функция не убывает или не возрастает, называются интервалами монотонности функции. Характер монотонности функции может изменяться только в тех точках ее области определения, в которой меняется знак первой производной. Точки, в которых первая производная функции обращается в нуль или терпит разрыв, называются критическими.

Теорема 1 (1-ое достаточное условие существования экстремума).

Пусть функция y=f(x) определена в точке х 0 и пусть существует окрестность δ>0 такое, что функция непрерывна на отрезке , дифференцируема на интервале (x 0 -δ,x 0)u(x 0 , x 0 +δ), причем ее производная сохраняет постоянный знак на каждом из этих интервалов. Тогда если на x 0 -δ,x 0) и (x 0 , x 0 +δ) знаки производной различны, то х 0 - точка экстремума, а если совпадают, то х 0 - не является точкой экстремума. При этом если при переходе через точку х0, производная меняет знак с плюса на минус (слева от х 0 выполняется f"(x)>0, то х 0 - точка максимума; если же производная меняет знак с минуса на плюс (справа от х 0 выполняется f"(x)<0, то х 0 - точка минимума.

Точки максимума и минимума называют точками экстремума функции, а максимумы и минимумы функции – ее экстремальными значениями.

Теорема 2 (необходимый признак локального экстремума).

Если функция y=f(x) имеет в токе x=x 0 экстремум, то либо f’(x 0)=0, либо f’(x 0) не существует.
В точках экстремума дифференцируемой функции касательная к ее графику параллельна оси Ox.

Алгоритм исследования функции на экстремум:

1)Найти производную функции.
2)Найти критические точки, т.е. точки, в которых функция непрерывна, а производная равна нулю или не существует.
3)Рассмотреть окрестность каждой из точек, и исследовать знак производной слева и справа от этой точки.
4)Определить координаты экстремальных точек, для этого значения критических точек подставить в данную функцию. Используя достаточные условия экстремума, сделать соответствующие выводы.

Пример 18. Исследовать на экстремум функцию у=х 3 -9х 2 +24х

Решение.
1) y"=3x 2 -18x+24=3(x-2)(x-4).
2) Приравняв производную нулю, находим x 1 =2, x 2 =4. В данном случае производная определена всюду; значит, кроме двух найденных точек, других критических точек нет.
3) Знак производной y"=3(x-2)(x-4) изменяется в зависимости от промежутка так, как показано на рисунке 1. При переходе через точку x=2, производная меняет знак с плюса на минус, а при переходе через точку x=4 - с минуса на плюс.
4) В точке x=2 функция имеет максимум y max =20, а в точке x=4 - минимум y min =16.

Теорема 3. (2-ое достаточное условие существование экстремума).

Пусть f"(x 0) и в точке х 0 существует f""(x 0). Тогда если f""(x 0)>0, то х 0 – точка минимума, а если f""(x 0)<0, то х 0 – точка максимума функции y=f(x).

На отрезке функция y=f(x) может достигать наименьшего (у наим) или наибольшего (у наиб) значения либо в критических точках функции, лежащих в интервале (а;b), либо на концах отрезка .

Алгоритм отыскания наибольшего и наименьшего значений непрерывной функции y=f(x) на отрезке :

1) Найти f"(x).
2) Найти точки, в которых f"(x)=0 или f"(x) - не существует, и отобрать из них те, которые лежат внутри отрезка .
3) Вычислите значение функции y=f(x) в точках, полученных в п.2), а так же на концах отрезка и выбрать из них наибольшее и наименьшее: они и являются соответственно наибольшим (у наиб) и наименьшим (у наим) значениями функции на отрезке .

Пример 19. Найти наибольшее значение непрерывной функции y=x 3 -3x 2 -45+225 на отрезке .

1) Имеем y"=3x 2 -6x-45 на отрезке
2) Производная y" существует при всех х. Найдем точки, в которых y"=0; получим:
3x 2 -6x-45=0
x 2 -2x-15=0
x 1 =-3; x 2 =5
3) Вычислим значение функции в точках x=0 y=225, x=5 y=50, x=6 y=63
Отрезку принадлежит лишь точка x=5. Наибольшим из найденных значений функции является 225, а наименьшим – число 50. Итак, у наиб =225, у наим =50.

Исследование функции на выпуклости

На рисунке изображены графики двух функций. Первый из них обращен выпуклостью вверх, второй – выпуклостью вниз.

Функция y=f(x) непрерывна на отрезке и дифференцируема в интервале (а;b), называется выпуклой вверх (вниз) на этом отрезке, если при axb ее график лежит не выше (не ниже) касательной, проведенной в любой точке M 0 (x 0 ;f(x 0)), где axb.

Теорема 4. Пусть функция y=f(x) имеет вторую производную в любой внутренней точке х отрезка и непрерывна на концах этого отрезка. Тогда если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вниз на отрезке ; если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вверх на .

Теорема 5. Если функция y=f(x) имеет вторую производную на интервале (а;b) и если она меняет знак при переходе через точку x 0 , тогда M(x 0 ;f(x 0)) есть точка перегиба.

Правило нахождения точек перегиба:

1) Найти точки, в которых f""(x) не существует или обращается в нуль.
2) Исследовать знак f""(x) слева и справа от каждой найденной на первом шаге точки.
3) На основании теоремы 4 сделать вывод.

Пример 20. Найти точки экстремума и точки перегиба графика функции y=3x 4 -8x 3 +6x 2 +12.

Имеем f"(x)=12x 3 -24x 2 +12x=12x(x-1) 2 . Очевидно, что f"(x)=0 при x 1 =0, x 2 =1. Производная при переходе через точку x=0 меняет знак с минуса на плюс, а при переходе через точку x=1 не меняет знака. Значит, x=0 - точка минимума (у min =12), а в точке x=1 экстремума нет. Далее, находим . Вторая производная обращается в нуль в точках x 1 =1, x 2 =1/3. Знаки второй производной изменяются следующим образом: На луче (-∞;) имеем f""(x)>0, на интервале (;1) имеем f""(x)<0, на луче (1;+∞) имеем f""(x)>0. Следовательно, x= - точка перегиба графика функции (переход с выпуклости вниз на выпуклость вверх) и x=1 - так же точка перегиба (переход с выпуклости вверх на выпуклость вниз). Если x=, то y= ; если, то x=1, y=13.

Алгоритм отыскания асимптоты графика

I. Если y=f(x) при x → a , то x=a - есть вертикальная асимптота.
II. Если y=f(x) при x → ∞ или x → -∞ , тогда у=А - горизонтальная асимптота.
III. Для нахождения наклонной асимптоты используем следующий алгоритм:
1) Вычислить . Если предел существует и равен b, то y=b - горизонтальная асимптота; если , то перейти ко второму шагу.
2) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен k, то перейти к третьему шагу.
3) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен b, то перейти к четвертому шагу.
4) Записать уравнение наклонной асимптоты y=kx+b.

Пример 21: Найти асимптоту для функции

1)
2)
3)
4) Уравнение наклонной асимптоты имеет вид

Схема исследования функции и построение ее графика

I. Найти область определения функции.
II. Найти точки пересечения графика функции с осями координат.
III. Найти асимптоты.
IV. Найти точки возможного экстремума.
V. Найти критические точки.
VI. С помощью вспомогательного рисунка исследовать знак первой и второй производных. Определить участки возрастания и убывания функции, найти направление выпуклости графика, точки экстремумов и точек перегиба.
VII. Построить график, учитывая исследование, проведенное в п.1-6.

Пример 22: Построить по изложенной выше схеме график функции

Решение.
I. Областью определения функции является множество всех вещественных чисел, кроме x=1.
II. Так уравнение x 2 +1=0 не имеет вещественных корней, то график функции не имеет точек пересечения с осью Ох, но пересекает ось Оу в точке (0;-1).
III. Выясним вопрос о существовании асимптот. Исследуем поведение функции вблизи точки разрыва x=1. Так как y → ∞ при х → -∞, у → +∞ при х → 1+, то прямая x=1 является вертикальной асимптотой графика функции.
Если х → +∞(x → -∞), то у → +∞(y → -∞); следовательно, горизонтальной асимптоты у графика нет. Далее, из существования пределов

Решая уравнение x 2 -2x-1=0 получаем две точки возможного экстремума:
x 1 =1-√2 и x 2 =1+√2

V. Для нахождения критических точек вычислим вторую производную:

Так как f""(x) в нуль не обращается, то критических точек нет.
VI. Исследуем знак первой и второй производных. Точки возможного экстремума, подлежащие рассмотрению: x 1 =1-√2 и x 2 =1+√2, разделяют область существования функции на интервалы (-∞;1-√2),(1-√2;1+√2) и (1+√2;+∞).

В каждом из этих интервалов производная сохраняет знак: в первом – плюс, во втором – минус, в третьем – плюс. Последовательность знаков первой производной запишется так: +,-,+.
Получаем, что функция на (-∞;1-√2) возрастает, на (1-√2;1+√2) убывает, а на (1+√2;+∞) снова возрастает. Точки экстремума: максимум при x=1-√2, причем f(1-√2)=2-2√2 минимум при x=1+√2, причем f(1+√2)=2+2√2. На (-∞;1) график направлен выпуклостью вверх, а на (1;+∞) - вниз.
VII Составим таблицу полученных значений

VIII По полученным данным строим эскиз графика функции

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.